import numpy as np def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1/(1+np.exp(-x)) return s def relu(x): """ Compute the relu of x Arguments: x -- A scalar or numpy array of any size. Return: s -- relu(x) """ s = np.maximum(0,x) return s def dictionary_to_vector(parameters): """ Roll all our parameters dictionary into a single vector satisfying our specific required shape. """ keys = [] count = 0 for key in ["W1", "b1", "W2", "b2", "W3", "b3"]: # flatten parameter new_vector = np.reshape(parameters[key], (-1,1)) keys = keys + [key]*new_vector.shape[0] if count == 0: theta = new_vector else: theta = np.concatenate((theta, new_vector), axis=0) count = count + 1 return theta, keys def vector_to_dictionary(theta): """ Unroll all our parameters dictionary from a single vector satisfying our specific required shape. """ parameters = {} parameters["W1"] = theta[:20].reshape((5,4)) parameters["b1"] = theta[20:25].reshape((5,1)) parameters["W2"] = theta[25:40].reshape((3,5)) parameters["b2"] = theta[40:43].reshape((3,1)) parameters["W3"] = theta[43:46].reshape((1,3)) parameters["b3"] = theta[46:47].reshape((1,1)) return parameters def gradients_to_vector(gradients): """ Roll all our gradients dictionary into a single vector satisfying our specific required shape. """ count = 0 for key in ["dW1", "db1", "dW2", "db2", "dW3", "db3"]: # flatten parameter new_vector = np.reshape(gradients[key], (-1,1)) if count == 0: theta = new_vector else: theta = np.concatenate((theta, new_vector), axis=0) count = count + 1 return theta