import numpy as np def linear_forward_test_case(): np.random.seed(1) """ X = np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]]) W = np.array([[ 0.74505627, 1.97611078, -1.24412333]]) b = np.array([[1]]) """ A = np.random.randn(3,2) W = np.random.randn(1,3) b = np.random.randn(1,1) return A, W, b def linear_activation_forward_test_case(): """ X = np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]]) W = np.array([[ 0.74505627, 1.97611078, -1.24412333]]) b = 5 """ np.random.seed(2) A_prev = np.random.randn(3,2) W = np.random.randn(1,3) b = np.random.randn(1,1) return A_prev, W, b def L_model_forward_test_case(): """ X = np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]]) parameters = {'W1': np.array([[ 1.62434536, -0.61175641, -0.52817175], [-1.07296862, 0.86540763, -2.3015387 ]]), 'W2': np.array([[ 1.74481176, -0.7612069 ]]), 'b1': np.array([[ 0.], [ 0.]]), 'b2': np.array([[ 0.]])} """ np.random.seed(1) X = np.random.randn(4,2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return X, parameters def compute_cost_test_case(): Y = np.asarray([[1, 1, 0]]) aL = np.array([[.8,.9,0.4]]) return Y, aL def linear_backward_test_case(): """ z, linear_cache = (np.array([[-0.8019545 , 3.85763489]]), (np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]]), np.array([[ 0.74505627, 1.97611078, -1.24412333]]), np.array([[1]])) """ np.random.seed(1) dZ = np.random.randn(3,4) A = np.random.randn(5,4) W = np.random.randn(3,5) b = np.random.randn(3,1) linear_cache = (A, W, b) return dZ, linear_cache def linear_activation_backward_test_case(): """ aL, linear_activation_cache = (np.array([[ 3.1980455 , 7.85763489]]), ((np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]]), np.array([[ 0.74505627, 1.97611078, -1.24412333]]), 5), np.array([[ 3.1980455 , 7.85763489]]))) """ np.random.seed(2) dA = np.random.randn(1,2) A = np.random.randn(3,2) W = np.random.randn(1,3) b = np.random.randn(1,1) Z = np.random.randn(1,2) linear_cache = (A, W, b) activation_cache = Z linear_activation_cache = (linear_cache, activation_cache) return dA, linear_activation_cache def L_model_backward_test_case(): """ X = np.random.rand(3,2) Y = np.array([[1, 1]]) parameters = {'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747]]), 'b1': np.array([[ 0.]])} aL, caches = (np.array([[ 0.60298372, 0.87182628]]), [((np.array([[ 0.20445225, 0.87811744], [ 0.02738759, 0.67046751], [ 0.4173048 , 0.55868983]]), np.array([[ 1.78862847, 0.43650985, 0.09649747]]), np.array([[ 0.]])), np.array([[ 0.41791293, 1.91720367]]))]) """ np.random.seed(3) AL = np.random.randn(1, 2) Y = np.array([[1, 0]]) A1 = np.random.randn(4,2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) Z1 = np.random.randn(3,2) linear_cache_activation_1 = ((A1, W1, b1), Z1) A2 = np.random.randn(3,2) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) Z2 = np.random.randn(1,2) linear_cache_activation_2 = ((A2, W2, b2), Z2) caches = (linear_cache_activation_1, linear_cache_activation_2) return AL, Y, caches def update_parameters_test_case(): """ parameters = {'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747], [-1.8634927 , -0.2773882 , -0.35475898], [-0.08274148, -0.62700068, -0.04381817], [-0.47721803, -1.31386475, 0.88462238]]), 'W2': np.array([[ 0.88131804, 1.70957306, 0.05003364, -0.40467741], [-0.54535995, -1.54647732, 0.98236743, -1.10106763], [-1.18504653, -0.2056499 , 1.48614836, 0.23671627]]), 'W3': np.array([[-1.02378514, -0.7129932 , 0.62524497], [-0.16051336, -0.76883635, -0.23003072]]), 'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]), 'b2': np.array([[ 0.], [ 0.], [ 0.]]), 'b3': np.array([[ 0.], [ 0.]])} grads = {'dW1': np.array([[ 0.63070583, 0.66482653, 0.18308507], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]]), 'dW2': np.array([[ 1.62934255, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. ], [ 0. , 0. , 0. , 0. ]]), 'dW3': np.array([[-1.40260776, 0. , 0. ]]), 'da1': np.array([[ 0.70760786, 0.65063504], [ 0.17268975, 0.15878569], [ 0.03817582, 0.03510211]]), 'da2': np.array([[ 0.39561478, 0.36376198], [ 0.7674101 , 0.70562233], [ 0.0224596 , 0.02065127], [-0.18165561, -0.16702967]]), 'da3': np.array([[ 0.44888991, 0.41274769], [ 0.31261975, 0.28744927], [-0.27414557, -0.25207283]]), 'db1': 0.75937676204411464, 'db2': 0.86163759922811056, 'db3': -0.84161956022334572} """ np.random.seed(2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} np.random.seed(3) dW1 = np.random.randn(3,4) db1 = np.random.randn(3,1) dW2 = np.random.randn(1,3) db2 = np.random.randn(1,1) grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return parameters, grads def L_model_forward_test_case_2hidden(): np.random.seed(6) X = np.random.randn(5,4) W1 = np.random.randn(4,5) b1 = np.random.randn(4,1) W2 = np.random.randn(3,4) b2 = np.random.randn(3,1) W3 = np.random.randn(1,3) b3 = np.random.randn(1,1) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} return X, parameters def print_grads(grads): print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dA1 = "+ str(grads["dA1"]))