#!/usr/bin/python3.6 # Package imports import numpy as np import matplotlib.pyplot as plt from testCases_v2 import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets np.random.seed(1) # set a seed so that the results are consistent #TEST_CASE = True TEST_CASE = False TEST_HIDDEN_LAYER_SIZE = True TEST_OPTIONAL_DATASETS = False PLOT_ACTIVATION = False ################ Orig Dataset ############### X, Y = load_planar_dataset() #Y=np.random.randint(5,size=(400,)) #print(X[0,:]) # Visualize the data: plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral); plt.show() ############### Optional Datasets ########### if (TEST_OPTIONAL_DATASETS): noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets() datasets = {"noisy_circles": noisy_circles, "noisy_moons": noisy_moons, "blobs": blobs, "gaussian_quantiles": gaussian_quantiles} ### START CODE HERE ### (choose your dataset) dataset = "noisy_circles" #dataset = "noisy_moons" #dataset = "blobs" #dataset = "gaussian_quantiles" ### END CODE HERE ### X, Y = datasets[dataset] X, Y = X.T, Y.reshape(1, Y.shape[0]) # make blobs binarynoisy_circles, noisy_moons, blobs, gaussian_quantiles if dataset == "blobs": Y = Y%2 # Visualize the data plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral); plt.show() ############## END OPTIONAL ######################### ### START CODE HERE ### (≈ 3 lines of code) shape_X = X.shape shape_Y = Y.shape m = X.shape[1] # training set size ### END CODE HERE ### print ('The shape of X is: ' + str(shape_X)) print ('The shape of Y is: ' + str(shape_Y)) print ('The shape of Y[0] is: ' + str((Y[0].T).shape)) #print ('Y=',Y[0]) print ('I have m = %d training examples!' % (m)) # Train the logistic regression classifier clf = sklearn.linear_model.LogisticRegressionCV(); clf.fit(X.T, Y[0]); #changed this to 1D array of shape(samples,) since that's what fit expects print("coeff,intercept = ", clf.coef_, clf.intercept_) # Plot the decision boundary for logistic regression plot_decision_boundary(lambda x: clf.predict(x), X, Y, "Logistic Regression") plt.title("Logistic Regression") plt.show() #this needed to draw the plot # Print accuracy LR_predictions = clf.predict(X.T) #print(clf.predict_proba(X.T)) print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + "(percentage of correctly labelled datapoints)") # GRADED FUNCTION: layer_sizes def layer_sizes(X, Y): """ Arguments: X -- input dataset of shape (input size, number of examples) Y -- labels of shape (output size, number of examples) Returns: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ ### START CODE HERE ### (≈ 3 lines of code) n_x = X.shape[0] # size of input layer n_h = 4 n_y = Y.shape[0] # size of output layer ### END CODE HERE ### return (n_x, n_h, n_y) if (TEST_CASE): X_assess, Y_assess = layer_sizes_test_case() (n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess) print("The size of the input layer is: n_x = " + str(n_x)) print("The size of the hidden layer is: n_h = " + str(n_h)) print("The size of the output layer is: n_y = " + str(n_y)) # GRADED FUNCTION: initialize_parameters def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random. ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h,n_x) * 0.01 b1 = np.zeros((n_h,1)) W2 = np.random.randn(n_y,n_h) * 0.01 b2 = np.zeros((n_y,1)) ### END CODE HERE ### assert (W1.shape == (n_h, n_x)) assert (b1.shape == (n_h, 1)) assert (W2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters if (TEST_CASE): n_x, n_h, n_y = initialize_parameters_test_case() parameters = initialize_parameters(n_x, n_h, n_y) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function) Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] ### END CODE HERE ### # Implement Forward Propagation to calculate A2 (probabilities) ### START CODE HERE ### (≈ 4 lines of code) Z1 = np.dot(W1,X)+b1 A1 = np.tanh(Z1) Z2 = np.dot(W2,A1)+b2 A2 = sigmoid(Z2) ### END CODE HERE ### assert(A2.shape == (1, X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return A2, cache if (TEST_CASE): X_assess, parameters = forward_propagation_test_case() A2, cache = forward_propagation(X_assess, parameters) # Note: we use the mean here just to make sure that your output matches ours. print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2'])) # GRADED FUNCTION: compute_cost def compute_cost(A2, Y, parameters): """ Computes the cross-entropy cost given in equation (13) Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) parameters -- python dictionary containing your parameters W1, b1, W2 and b2 [Note that the parameters argument is not used in this function, but the auto-grader currently expects this parameter. Future version of this notebook will fix both the notebook and the auto-grader so that `parameters` is not needed. For now, please include `parameters` in the function signature, and also when invoking this function.] Returns: cost -- cross-entropy cost given equation (13) """ m = Y.shape[1] # number of example # Compute the cross-entropy cost ### START CODE HERE ### (≈ 2 lines of code) logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1-A2),(1-Y)) cost = - np.sum(logprobs) * 1/m ### END CODE HERE ### cost = float(np.squeeze(cost)) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17 assert(isinstance(cost, float)) return cost if (TEST_CASE): A2, Y_assess, parameters = compute_cost_test_case() print("cost = " + str(compute_cost(A2, Y_assess, parameters))) # GRADED FUNCTION: backward_propagation def backward_propagation(parameters, cache, X, Y): """ Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters """ m = X.shape[1] # First, retrieve W1 and W2 from the dictionary "parameters". ### START CODE HERE ### (≈ 2 lines of code) W1 = parameters["W1"] W2 = parameters["W2"] ### END CODE HERE ### # Retrieve also A1 and A2 from dictionary "cache". ### START CODE HERE ### (≈ 2 lines of code) A1 = cache["A1"] A2 = cache["A2"] ### END CODE HERE ### # Backward propagation: calculate dW1, db1, dW2, db2. ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above) dZ2 = A2-Y dW2 = 1/m * np.dot(dZ2,A1.T) db2 = 1/m * np.sum(dZ2,axis=1,keepdims=True) dZ1 = np.dot(W2.T,dZ2) * (1-np.power(A1,2)) dW1 = 1/m * np.dot(dZ1,X.T) db1 = 1/m * np.sum(dZ1,axis=1,keepdims=True) ### END CODE HERE ### grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads parameters, cache, X_assess, Y_assess = backward_propagation_test_case() if (TEST_CASE): grads = backward_propagation(parameters, cache, X_assess, Y_assess) print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dW2 = "+ str(grads["dW2"])) print ("db2 = "+ str(grads["db2"])) # GRADED FUNCTION: update_parameters def update_parameters(parameters, grads, learning_rate = 1.2): """ Updates parameters using the gradient descent update rule given above Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns: parameters -- python dictionary containing your updated parameters """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] ### END CODE HERE ### # Retrieve each gradient from the dictionary "grads" ### START CODE HERE ### (≈ 4 lines of code) dW1 = grads["dW1"] db1 = grads["db1"] dW2 = grads["dW2"] db2 = grads["db2"] ## END CODE HERE ### # Update rule for each parameter ### START CODE HERE ### (≈ 4 lines of code) W1 = W1 - learning_rate * dW1 b1 = b1 - learning_rate * db1 W2 = W2 - learning_rate * dW2 b2 = b2 - learning_rate * db2 ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters if (TEST_CASE): parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # GRADED FUNCTION: nn_model def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False): """ Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of the hidden layer num_iterations -- Number of iterations in gradient descent loop print_cost -- if True, print the cost every 1000 iterations Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] # Initialize parameters ### START CODE HERE ### (≈ 1 line of code) parameters = initialize_parameters(n_x, n_h, n_y) ### END CODE HERE ### # Loop (gradient descent) for i in range(0, num_iterations): ### START CODE HERE ### (≈ 4 lines of code) # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache". A2, cache = forward_propagation(X, parameters) # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost". cost = compute_cost(A2, Y, parameters) # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads". grads = backward_propagation(parameters, cache, X, Y) # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters". parameters = update_parameters(parameters, grads) ### END CODE HERE ### # Print the cost every 1000 iterations if print_cost and i % 1000 == 0: print ("Cost after iteration %i: %f" %(i, cost)) return parameters if (TEST_CASE): X_assess, Y_assess = nn_model_test_case() parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=True) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # GRADED FUNCTION: predict def predict(parameters, X): """ Using the learned parameters, predicts a class for each example in X Arguments: parameters -- python dictionary containing your parameters X -- input data of size (n_x, m) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold. ### START CODE HERE ### (≈ 2 lines of code) A2, cache = forward_propagation(X, parameters) if (PLOT_ACTIVATION): predictions = (A2) #use this to plot exact values, accuracy values reported are incorrect in this case else: predictions = (A2 > 0.5) #this plots 0/1. this is what should be used ### END CODE HERE ### return predictions if (TEST_CASE): parameters, X_assess = predict_test_case() predictions = predict(parameters, X_assess) print("predictions mean = " + str(np.mean(predictions))) ################## MAIN pgm ################### # Build a model with a n_h-dimensional hidden layer parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True) # Plot the decision boundary plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y, 4) plt.title("Decision Boundary for hidden layer size " + str(4)) plt.show() # Print accuracy predictions = predict(parameters, X) print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%') # This may take about 2 minutes to run if (TEST_HIDDEN_LAYER_SIZE): plt.figure(figsize=(16, 32)) hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] for i, n_h in enumerate(hidden_layer_sizes): plt.subplot(5, 2, i+1) plt.title('Hidden Layer of size %d' % n_h) parameters = nn_model(X, Y, n_h, num_iterations = 5000) plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y, n_h) plt.show() predictions = predict(parameters, X) accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))